Contents

- Page 2: How to access to the LATS LCC
- Page 3: User Registration
- Page 5 : Simple Mode & Advanced Mode
- Page 6 : Simple Mode
- Page 9 : Advanced Mode
- Page 20 : Report
- Page 29: How to add to the weather data
- Page 31 : Case Study

LATS LCC tool is available for LG Employee such as sales engineer. All users need to request authorization to use. It is a Microsoft Excel-based tool.

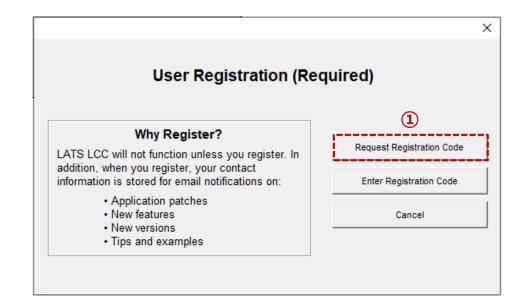
Please check the Agreement after confirming the Notice.

LATS LCC Program

Test Version 1.0

Copyright © 2020 LG Electronics.Inc

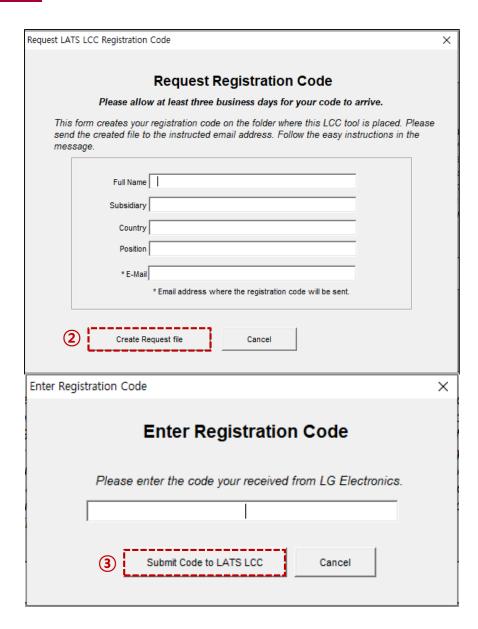
Notice


The Program is only a tool and does not, on any account, replace the need for the Licensee to properly examine the characteristics of the location where the equipment has to be installed, the legal requirements for the installation and what would be the appropriate air conditioning installation to meet the customers' needs. The Program is only an estimation for comparative purposes and should be used as a rough guideline. The other companies data are referenced in theirs catalogs, and LG Electronics is not responsible for the results of other companies' specification changes. The Program does not generate a complete energy model. Therefore, LG Electronics assumes no responsibility for the warranty of the results, expressed or implied, and all risk in using the results lie in the responsibility of the consultant engineer in charge with the project. The Program does not consider ventilation make-up air load or unit piping in its estimation. Unit capacities and power consumption are based on nominal values. LG Electronics reserves its right to make changes modifications and upgrades at any time without previous notice. Changes within The Program may affect your results even if your input does not change. For a complete, far more accurate energy model, please contact a consulting engineer / design company that may or may not use a certified modelling tool. Therefore, LG Electronics assumes no responsibility for the use of the Program.

Agreement

I accept the therms of Notice.

I do not accept the terms of Notice.


LATS LCC will not function unless you register.

In addition, when you register, your contract information is stored for email notification about : Application patches, New features, New versions, Tips and examples

User Registration is consist of Request Registration Code & Enter Registration Code.

① Request Registration Code: This is a space to input program user information. Please enter the user information in five items.

E-Mail is necessary input value, so you should be inputted the E-Mail. (E-mail address where the registration code will be sent.)

② Create Request file: This form creates your registration code on folder where this LCC tool is placed.

Please send the file to the corresponding e-mail(<u>ae-energymodeling@lge.com</u>).

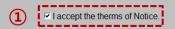
③ Enter Registration Code: Enter the registration code you received from the LATS LCC manager. And please click the submit button. If registered normally, users can use it after registration.

LATS LCC Program

Test Version 1.0

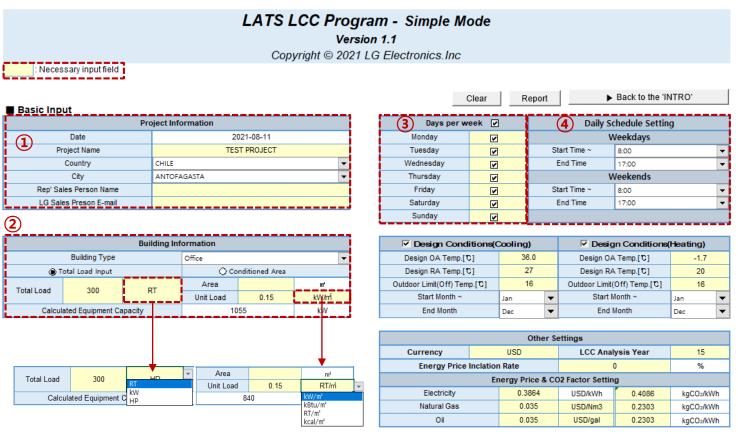
Copyright © 2020 LG Electronics.Inc

Notice


The Program is only a tool and does not, on any account, replace the need for the Licensee to properly examine the characteristics of the location where the equipment has to be installed, the legal requirements for the installation and what would be the appropriate air conditioning installation to meet the customers' needs. The Program is only an estimation for comparative purposes and should be used as a rough guideline. The other companies data are referenced in theirs catalogs, and LG Electronics is not responsible for the results of other companies' specification changes. The Program does not generate a complete energy model. Therefore, LG Electronics assumes no responsibility for the warranty of the results, expressed or implied, and all risk in using the results lie in the responsibility of the consultant engineer in charge with the project. The Program does not consider ventilation make-up air load or unit piping in its estimation. Unit capacities and power consumption are based on nominal values. LG Electronics reserves its right to make changes modifications and upgrades at any time without previous notice. Changes within The Program may affect your results even if your input does not change. For a complete, far more accurate energy model, please contact a consulting engineer / design company that may or may not use a certified modelling tool. Therefore, LG Electronics assumes no responsibility for the use of the Program.

① If the registration code is registered normally, the user can select **Agreement**. When you click 'I accept the terms of Notice.' in the Agreement, the 'SIMPLE MODE' and 'ADVANCED MODE' buttons will appear as shown on the left.

② Please note that LATS LCC is divided into Simple Mode and Advanced Mode according to user usage and level.


Users can freely use one of the two modes according to the purpose of use.

☐ I do not accept the terms of Notice.

② SIMPLE MODE ADVANCED MODE

① Project Information consists of Date, Project Name, Country, City, Rep's Sales Person Name, and LG Sales Person E-mail. Date is automatically inputted today's date. Next, select country and city.

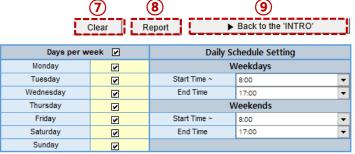
Important!

Yellow color cell is necessary input field, so please enter the required value at the yellow color cell.

- ② Please select only one type. **Building Information** is possible calculated equipment capacity. Select the method you want to calculate and enter the appropriate value. Building type consists of Office, Residential, Retail, and Hotel.
- ③ Days per week is selecting schedule by day of the week. You can choose the day of the week you want. If you want to operate on a full day of the week, please click on the check box at the top.
- ④ **Daily Schedule Setting** is that sets the time of the weekdays and weekend. You can set the time you want to operate.

^{*} If you want change the unit, please click the unit cell(Only for yellow color cells).

LATS LCC Program - Simple Mode


Version 1.1

Copyright © 2021 LG Electronics.Inc

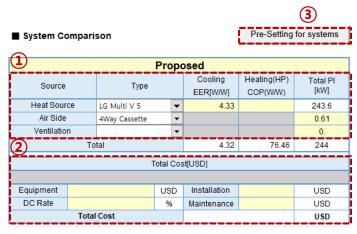
: Necessary input field

■ Basic Input	■ Basic Input								
Pr	oject Information								
Date	2021-08-11								
Project Name	TEST PROJECT								
Country	CHILE	•							
City	ANTOFAGASTA	•							
Rep' Sales Person Name									
LG Sales Preson F-mail									

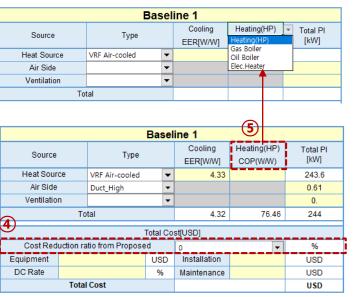
5 Design Conditions(€	Cooling)	Design Conditions	Heating)		
Design OA Temp.[C]	36.0		Design OA Temp.[C]	-1.7	
Design RA Temp.[℃]	27		Design RA Temp.[℃]	20	
Outdoor Limit(Off) Temp.[C]	16		Outdoor Limit(Off) Temp.[${f C}$]	16	
Start Month ~	Jan	•	Start Month ~	Jan	•
End Month	Dec ▼		End Month	Dec	•

6 Other Settings								
Currency	USD	LCC Analysis Year		15				
Energy Price	e Rate	()	%				
	Er	nergy Price & CO	02 Factor Settin	g				
Electricity		0.5085	USD/kWh	0.5471	kgCO ₂ /kWh			
Natural Gas	Natural Gas 0.035				kgCO ₂ /kWh			
Oil		0.035	USD/gal	0.2303	kgCO ₂ /kWh			

(§) **Design conditions** can be inputted design outdoor air(OA), room air(RA) Temperature. Please select type of the design conditions. You can select not only one type but also two types at the same time. Design outdoor air temperature will be changed automatically according to the city. Outdoor Limit(Off) temperature that not need to cooling or heating operation.


⑤ Select the currency and LCC analysis year.
CO2 emission factor(Elec.) is automatically inputted values depending on the region.

Energy Price Increase Rate is annual energy price increase rate. So if you want to apply annual energy price increase rate, please input the value.


- (7) 'Clear' button deletes all inputted values.
- **®** Finally if you want to see the **report**, click the Report button.
- ⑨ '► Back to the INTRO' button takes you back to the Intro page.

^{*} If you want change the unit, please click the unit cell(Only for yellow color cells).

			Basel	ine 2		
Source	се Туре		Cooling EER[W/W]	Elec.Heater Efficiency(%)	Total PI [kW]	
Heat Sourc	:e	LG Single Packag	e(CC ▼	3.20		329.7
Air Side			-			29.94
Ventilation	1		•			0.
	To	tal		2.93		360
		Т	otal Cos	st[USD]		
Cost Redu	iction ra	tio from Propose	d	0	▼	%
Equipment			USD	Installation		USD
DC Rate			%	Maintenance		USD
	Total	Cost				USD

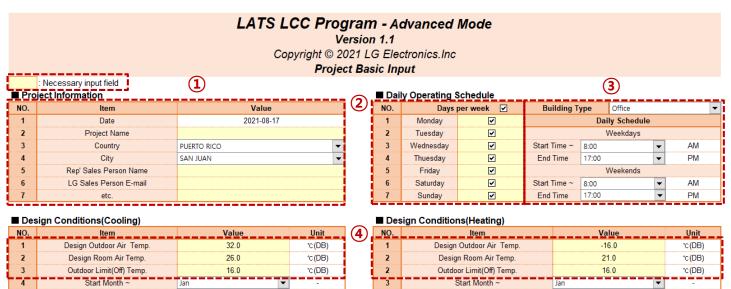
	Baseline 3								
Source		Туре		Cooling EER[W/W]	Gas Boiler Efficiency(%)	Total PI [kW]			
Heat Source	e	Air-Cooled Chille	er 🔻	2.80		376.8			
Air Side		FCU_Ducted Type	• ▼			21.1			
Ventilation	1		•			0.			
	To	tal		2.65		398			
			Total Co	st[USD]					
Cost Redu	iction ra	tio from Propose	d	0	-	%			
Equipment	ment L			Installation		USD			
DC Rate			%	Maintenance		USD			
	Total	Cost			USD				

System comparison consists of Proposed, Baseline 1, Baseline 2, and Baseline 3. The name of the Proposed, Baseline 1, Baseline 2, and Baseline 3 can be changed.

Select Heat source, Air side, and Ventilation. Heat source of the Proposed does not include competitor models.

① **Heat source** of Baseline 1, Baseline 2, and Baseline 3 includes not only LG Model but also competitor model. Air side and Ventilation are the same as proposed.

Cooling EER & Heating COP of the heat source can be inputted by user.


Total PI will be changed automatically according to the type.

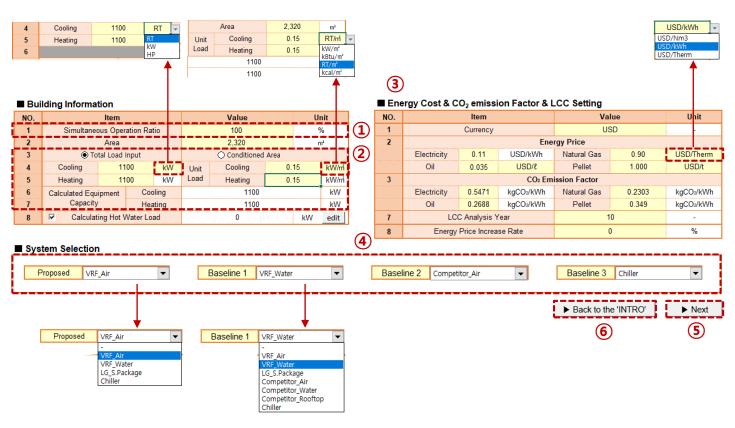
- ② Total Cost is divided into Equipment, Installation, DC Rate, and Maintenance. Total Cost is necessary inputted values for LCC analysis.
- (3) 'Pre-simulation' is automatically calculated cooling EER, Heating COP, and Total PI.
- **4 Cost Reduction ratio from Proposed** automatically calculates equipment cost of Baseline 1, Baseline 2, and Baseline 3 with selected ratio value from the equipment cost of proposed.
- (§) **Heating type** can be changed according to user's slecting. It is divided into Heating(HP), Gas Boiler, Oil Boiler, and Elec.Heater.

End Month

Dec

Advanced Mode consists of Basic Input & System Selection.

Important!


Yellow color cell is necessary input field, so please enter the required value at the yellow color cell.

- ① **Project Information** consists of Date, Project Name, Country, City, Rep's Sales Person Name, and LG Sales Person E-mail. Date is automatically inputted today's date. Next, select country and city.
- ② Days per week is selecting schedule by day of the week. You can choose the day of the week you want. If you want to operate on a full day of the week, please click on the check box at the top.
- 3 **Daily Schedule Setting** is that sets the time of the week and weekend. You can set the time you want to operate.
- Design conditions can be inputted design OA, RA Temperature. Design outdoor air temperature will be changed automatically according to the city. Outdoor Limit(Off) temperature that not need to cooling or heating operation.

End Month

Dec

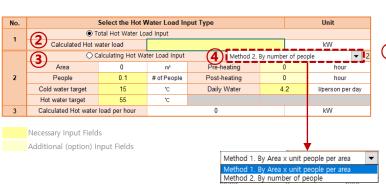
- * If you want change the unit, please click the unit cell(Only for yellow color cells).
- * Baseline 1, Baseline 2, and Baseline 3 system selection types are the same(including competitor systems).

Building Information is for inputting equipment capacity. Input method is divided into Total Load Input and Conditioned Area. Select the method you want to enter the appropriate value. Building type consists of Office, Residential, Retail, and Hotel.

- ① Simultaneous Operation Ratio is the percentage of overall system utilization.
- ② Please select only one type of input equipment capacity. Select the method you want to enter the appropriate value.
- ③ Select the currency type and LCC analysis year. CO2 emission factors are automatically inputted values depending on the region. **Energy Price Increase Rate** is annual energy price increase rate. So if you want to apply annual energy price increase rate, please input the value.
- **4) System selection** is to select systems for LCC analysis. For system comparison, user should select at least two systems. Proposed includes only LG system, but Baseline 1, Baseline 2, and Baseline 3 include LG system and competitor system.
- ⑤ Finally, '▶ **Next'** button is used to move to the next page after entering all values.
- ⑥ '▶ Back to the 'INTRO" button takes you back to the Intro page.

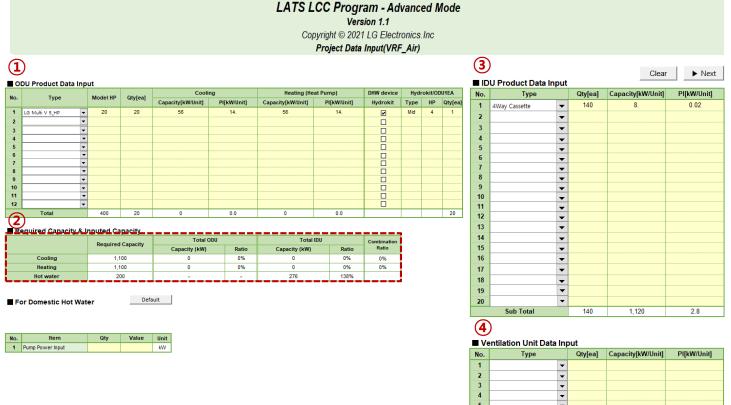
Business

■ Building Information Value Unit 100 Simultaneous Operation Ratio 2.320 Area Total Load Input O Conditioned Area Cooling 1100 Cooling kW/m kW kW 1100 Heating 0.15 kW/m Cooling 1100 kW Calculated Equipment kW Calculating Hot Water Load 0 kW edit


LATS LCC Program - Calculating Hot Water Load

Test Version 1.1

Copyright © 2021 LG Electronics.Inc


► OK

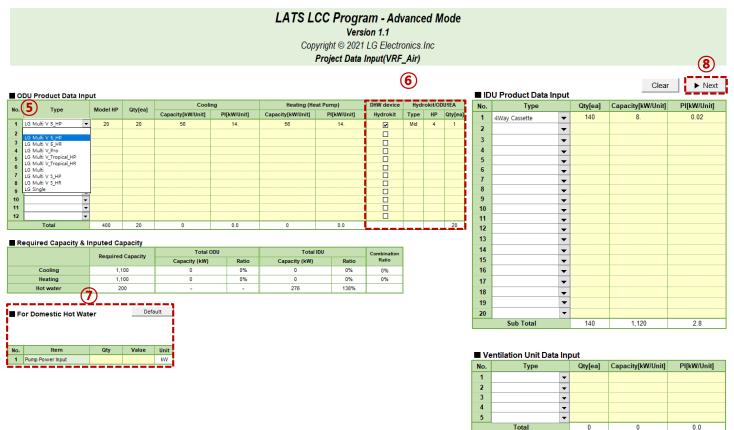
Load Default Values

- ① If you want to use the Hot Water function, click the check box on **Calculating Hot Water Load**. Click to appear a sheet as follows (input sheet for hot water load). Additionally, if you want to edit the values, please click the 'edit' button.
- ② There are two ways to input hot water load. First, if you know the hot water load value, you can enter it directly.
- 3 The second method is to enter the variables used to calculate the hot water load.
- If you know the values of the variables required to calculate the hot water load, you can enter the values for the variables directly. If you enter the values corresponding to the variables, the hot water load value is calculated automatically.
- ④ The way to enter the number of people is divided into two. Method 1 is by area x unit people per area and Meathod 2 is by number of people. You can select and enter the method you want.
- ⑤ Setting for **monthly peak load ratio**. Users can change peak load rate of hot water per month.

① **ODU Product Data Input** is for selecting type of the outdoor unit and inputting Model HP, Quantity, Capacity, and Power Input of outdoor units.

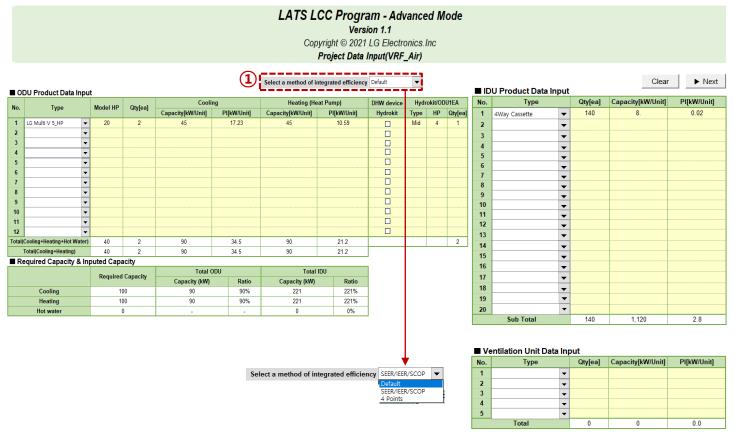
- ODU Type(Proposed)

- : LG Multi V 5, LG Multi V_Pro, LG Multi V_Tropical, LG Multi, LG Multi V S, LG Single
- ODU Type(Alt 1, Alt 2, and Alt 3)
- : VRF Air-cooled, Multi Split, VRF Mini, Single Split(Constant), Single Split(Inverter)
- ② Required Capacity & Inputted Capacity is only for checking whether the inputted capacity is enough for required capacity.
- (3) **IDU Product Data Input** is for selecting type of the indoor unit and inputted Quantity, Capacity, and Power Input of indoor units.


- IDU Type

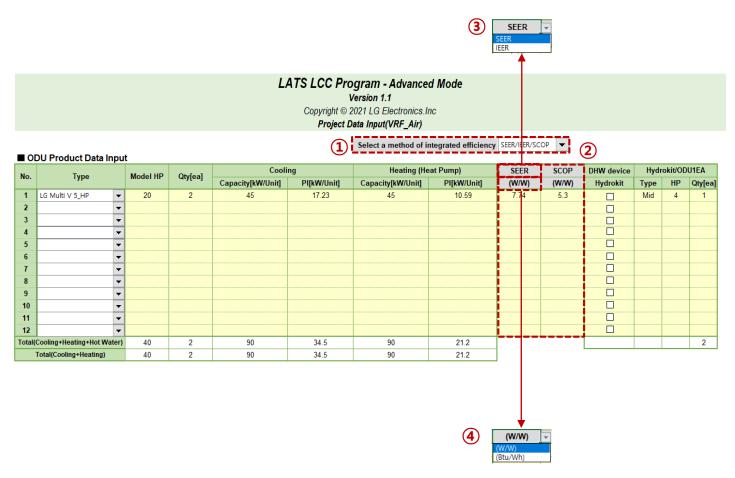
0.0

- : 1Way, 2Way, and 4Way Cassette, High static, Middle static, and Low static Duct, Wall mounted, Floor Standing, Ceiling Suspended, Console, and AHU
- Wentilation Unit Data Input is for selecting type of the ventilation unit and inputting Quantity, Capacity, and Power Input of ventilation units.
- Venti Type : ERV, FAU, DOAS


Total

Hydrokit(Hot water) function is only applicable to LG Air-cooled VRF. The systems for our Air-cooled VRF is 'VRF Air'.

- (5) Only 'LG_Multi V 5, LG_Multi V_Tropical, and LG_Multi V S' systems are eligible for hydrokit (Hot water). Among these systems, heat recovery function only apply if the product type is named '_HR'. If you want to apply the case where heat recovery, please select the product marked '_HR'. Otherwise, please select the product marked ' HP' at the end.
- ⑥ To distinguish the ODU system with the Hydrokit, please click the connected ODU as follows. Also, please select the type, horsepower, and number of hydrokit connected to a single ODU.
- ① Users need to type in the power input of Hot water pump when using 'Domestic Hot Water' function.



'SEER/IEER/SCOP' function is three choices are available: Default, SEER/IEER/SCOP, and 4 Points

① If user knows the 'SEER/IEER/SCOP' values, click the item of the 'SEER/IEER/SCOP' and input the value. And if user knows the values of the 'EER/COP', user can input the values. But if user doesn't use this function, user uses it after selecting '**Default**'.

Advanced Mode – Air-cooled VRF(SEER/IEER/SCOP)

- ① When you click the 'SEER/IEER/SCOP', the 'SEER/SCOP' input cell appears. Input the values corresponding to 'SEER/SCOP' in the input cell.
- ② The 'SEER/SCOP' calculation is calculated as the difference between the user-inputted 'SEER/SCOP' values and the ratio of the 'SEER/SCOP' values calculated based on the rated value.
- ③ Only 'SEER/SCOP' can be inputted in the current cell. However, if you want to enter the 'IEER' values, if you click a cell in the SEER notation, the notation changes so that you can select and input the 'IEER'.
- ④ If the user wants to change the 'SEER/IEER' input **unit**, the unit can be changed to '(Btu/Wh)' by clicking on the cell inputted as '(W/W)'.

Model HP

20

Qty[ea]

2

2

90

34.5

34.5

■ ODU Product Data Input

LG Multi V 5_HP

Total(Cooling+Heating+Hot Water)

Total(Cooling+Heating)

Type

LATS LCC Program - Advanced Mode Version 1.1 Copyright © 2021 LG Electronics Inc Project Data Input(VRF_Air)

90

90

21.2

21.2

1 Select a method of integrated efficiency 4 Points Cooling EER at 4 Points (W/W) Heating COP at 4 Points [W/W] Cooling Heating (Heat Pump) Capacity[kW/Unit] PI[kW/Unit] Capacity[kW/Unit] B(75%) C(50%) D(25%) B(54%) C(35%) D(15%) PI[kW/Unit] A(88%) 17.23 17.74 8.75 **(2**) (3)

- ① If the user knows the 'EER/COP' 4 Points values of the system, select the item '4 Points'. Click to generate 'Cooling EER 4 Points' and 'Heating COP 4 Points' input cells. You can input the appropriate value.
- ② **The 4 points in Cooling EER** are A(100%), B(75%), C(50%), and D(25%) so please check the ratio carefully and input it.

LATS LCC Program - Advanced Mode

Version 1.1

Copyright © 2021 LG Electronics.Inc

Project Data Input(VRF_Water)

0.0

(1)

ODU Product Data Input

No.	T	Model HP	06.[1	Coo	ling	Heating	
NO.	Туре	Wodel nP	Qty[ea]	Capacity[kW/Unit]	PI[kW/Unit]	Capacity[kW/Unit]	PI[kW/Unit]
1	LG Multi V_Water ▼	20	184	6.	1.329	0.	0.
2	▼						
3	-						
4	▼						
5	▼						
6	▼						
7	-						
8	-						
9	-						
10	-						
11	-						
12	▼						

 Additional Equipment for Cooling
 3
 Default

 No.
 Item
 Value
 Qty
 Unit
 No.
 Item
 Value
 Qty
 Unit

 1
 Pump Power Input
 81.1
 2
 kW
 2
 C/T Fan Power
 83.3
 2
 kW

1,100

244.4

Additional	Equipment	for Heating

3,680

Total

No.	Item	Value	Qty	Unit	No.	Item	Value	Unit
1	Pump Power Input	0.	2	kW	2	Boiler Type	Gas Boiler ▼	-
	`				3	Boiler Efficiency	80	%

■ Required Cpacity & Inputed Capacity

- resquired opasity	a inputou oupuoity					
	Required Cpacity	Total ODU		Total IDU	tal IDU	
	(kW)	Capacity (kW)	Ratio	Capacity (kW)	Ratio	
Cooling	1,100	1,100	100%	0	0%	
Heating	1,100	0	0%	0	0%	
		0		0		

	* * * * * * * * * * * * * * * * * * * *			
1	4Way Cassette ▼			
2	-			
3	-			
4	-			
5	•			
6	▼			
7	▼			
8	▼			
9	▼			
10	▼			
11	•			
12	•			
13	▼			
14	▼			
15	▼			
16	▼			
17	▼			
18	▼			
19	▼			
20	-			
	Sub Total	0	0	0.0

■ Ventilation Unit Data Input

	No.	Туре	Qty[ea]	Capacity[kW/Unit]	PI[kW/Unit]
	1	•			
	2	▼			
	3	•			
	4	•			
1	5	▼			
		Total	0	0	0.0

- ① **ODU Product Data Input** is for selecting type of the outdoor unit and inputting Model HP, Quantity, Capacity, and Power Input. Water-cooled VRF Type is only one type.
- ② Additional Equipment for Cooling items are divided into Pump Power Input and Cooling Tower Fan Power. Additional Equipment for heating items are divided into Pump Power Input, Boiler Type, and Boiler Efficiency. Boiler Type can be selected Gas boiler or Oil boiler.
- * Users can see the detail Information in the Reference of the Report.
- (3) 'Default' button is to calculate automatically Pump Power Input, Cooling Tower Fan Power, and Boiler Efficiency.
- Required Capacity & Inputted Capacity is only for checking whether the inputted capacity is enough for required capacity.
- (§) **IDU Product Data Input** is for selecting type of the indoor unit and inputting Quantity, Capacity, and Power Input.

- IDU Type

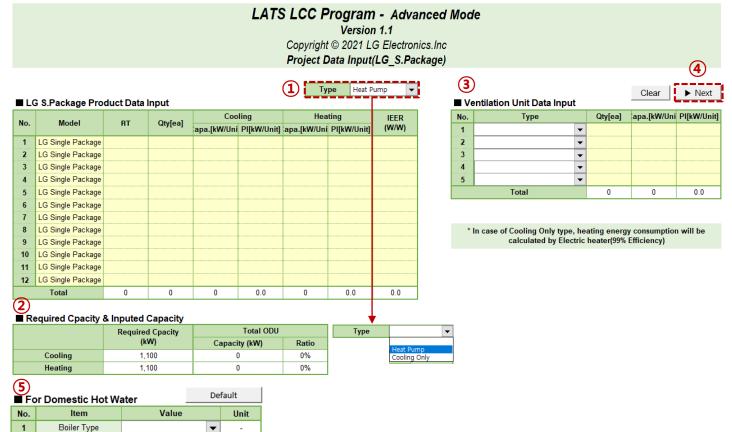
▶ Next

- : 1Way, 2Way, and 4Way Cassette, High static, Middle static, and Low static Duct, Wall mounted, Floor Standing, Ceiling Suspended, Console, and AHU
- **(6) Ventilation Unit Data Input** is for selecting type of the ventilation unit and inputting Quantity, Capacity, and Power Input.
- ⑦ Finally, '▶ Next' button is to move to the next page after entering all values.
- **® For Domestic Hot Water** is only input about hot water. **Business**

2

Boiler Efficiency

1 Pump Power Input


Qty

Value

%

Unit

kW

Single Package Input UI is the same as Rooftop.

- ① Type of the Single Package is divided into Heat Pump and Cooling Only.
- LG S.Package(Rooftop) can be inputted RT, Quantity, Capacity, Power Input, IEER.
- ② Required Capacity & Inputted Capacity is only for checking whether the inputted capacity is enough for required capacity.
- ③ Ventilation Unit Data Input is for selecting type of the ventilation unit and requires Quantity, Capacity, and Power Input.
- Venti Type : ERV, FAU, and DOAS
- *In case of Cooling Only type, heating energy consumption will be calculated by Electric heater(99% Efficiency).
- ④ Finally, '▶ **Next'** button is to move to the next page after entering all values.
- **⑤ For Domestic Hot Water** is only input about hot water.

LATS LCC Program - Advanced Mode

Version 1.1

Copyright © 2021 LG Electronics.Inc

Project Data Input(Chiller)

No.	Model	RT	Qty[ea]	COP[W/W]
1	Water-cooled Chiller	300	1	6.1
2				
4				
5				
	Total	200	4	C 1

■ Required Cpacity & Inputed Capacity

	Required Cpacity	Total Chiller		Total IDU	
	(kW)	Capacity (kW)	Ratio	Capacity (kW)	Ratio
Cooling	1,055	1,055	100%	1,122	106%

■ IDU Product Data Input

No.	Туре		Qty[ea]	Capacity[kW/Unit]	PI[kW/Unit]
1	FCU_Ducted Type	•	110	10.2	0.03
2		•			
3		•			
4		•			
5		•			
6		•			
7		•			
	Total		110	1,122	3.3

■ Ventilation Unit Data Input

No.	Туре	Qty[ea]	Capacity[kW/Unit]	PI[kW/Unit]
1	▼			
2	▼			
3	▼			
4	▼			
5	▼			
6	▼			
7	▼			
	Total	0	0	0.0

- ① Type of the chiller is to select chiller type, LG ISC, Air-cooled Chiller, and Water-cooled Chiller. Chiller Product Data Input requires RT, Quantity, and COP(efficiency).
- ② Required Capacity & Inputted Capacity is only for checking whether the inputted capacity is enough for required capacity.
- (3) **IDU Product Data Input** is for selecting type of the indoor unit and requires Quantity, Capacity, and Power Input.
- IDU Type

Next

: FCU_Cassette Type, FCU_Ducted Type, and AHU

- 4 Ventilation Unit Data Input is for selecting type of the ventilation unit and requires Quantity, Capacity, and Power Input.
- Venti Type : ERV, FAU, and DOAS
- ⑤ Finally, '▶ **Next'** button is to move to the next page after entering all values.

LATS LCC Program - Advanced Mode

Version 1.1

Copyright © 2021 LG Electronics.Inc


Project Data Input(Chiller)

Default

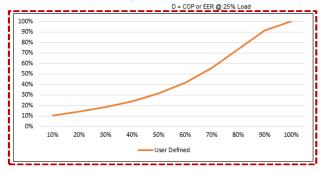
■ Chiller Specification

Condenser Water Pump				
Cooling Water Flow				
Pump Number		ea		
Pump Power		kW		

Chilled Water Pump				
Chilled Water Flow				
Pump Number		ea		
Pump Power		kW		

-	
₫	Ž

Heating Type				
Heating Type ▼				
Boiler Efficiency			%	


Heating Water Pump				
Heating Water Flow				
Pump Number		ea		
Pump Power		kW		

4 For Hot water					
Item	Va	Unit			
Boiler Type		-			
Boiler Efficiency		%			
Item	Qty	Value	Unit		
Pump Power Input			kW		

■ IPLV(Integrated Part Load Value)

A = COP or EER @ 100% Load

(1) Chiller Specification is for inputting additional equipment such as Cooling Tower, Pump, Boiler, etc.

Cooling Tower requires Capacity, Power Input, and Unit Number.

Condenser Water Pump requires Cooling Water Flow in condenser water side, Pump Number, and Pump power.

Chiller Water Pump requires Chilled Water Flow, Pump Number, and Pump power.

Heating Type can be selected between Gas Boiler and Oil Boiler. Boiler Efficiency is required for calculation.

If user wants more detail information, please refer to the Reference of Report.

- ② 'Default' button is to automatically calculate values of Cooling Tower, Condenser Water Pump, Chilled Water Pump, Heating Type, and Heating Water Pump based on the ASHRAE Standard 90-1.
- (3) When users leave IPLV field blank, LCC tool calculates chiller performance at partial load condition based on ASHRAE Standard 90-1. minimum efficiency values.

Users can type in the IPLV values. In this case, LCC tool modifies chiller performance at partial load condition according to the inputted IPLV.

The graph below changes according to the IPLV value entered by the user.

4 For Domestic Hot Water is only input about hot water.

LATS LCC Program - Advanced Mode Version 1.1

Copyright © 2021 LG Electronics.Inc **Project LCC**

2					(1	L)
Propo	sed			Discount	Rate	
	L	ist	Design	ed HVAC	Unit Price	Total Price (USD)
		Outdoor Unit	400	HP	600	240,000
	Equipment	Indoor Unit(inc. Ventation)	400	HP	380	151,200
		Sum				391,200
		Ref. piping work	400	HP	90	38,000
Initial		Drain piping work	400	HP	45	18,000
Cost		Indoor unit Installation	140	EA	50	7,000
	Installation	Duct Work	0	HP	90	0
		Outdoor unit Basement	20	EA	1,250	25,000
		Control Electrical	400 340	HP	48 40	19,200 13,600
		Electrical	340	kW	40	13,000
		Sum	·Å			118,800
	Total					510,000
	L	ist	Design	ed HVAC	Unit Price	Total Price (USD)
		Energy Cost(Electricity)	225,256	kWh/year	0.11	24,800
	Operation					
		Sum				24,800
		VRF Air-cooled	400	HP	0	0
Annual Cost		Indoor Unit	400	HP	0	0
	Manintenance					
		Sum				0
	Total					24,800
1	0 years Life cycle	Cost				758,000

Alt 1				Discount F	Rate	
	ι	ist	Design	ed HVAC	Unit Price	Total Pric (USD)
		Outdoor Unit	400	HP	400	160,000
		Indoor Unit(inc. Ventation)	400	HP	0	151,200
	F	Cooling Tower (Closed Type)	319	RT	130	41,500
	Equipment	Pump	18	kW	330	6,100
		Boiler(Gas,Oil)/Elec. Heater	313	RT	150	47,000
		Sum				405,800
		Ref. piping work	400	HP	90	36,000
Initial		Drain piping work	400	HP	45	18,000
Cost		Indoor unit Installation	140	EA	50	7,000
		CW Piping	400	HP	40	16,000
	Installation	DUCT Work	0	HP	90	0
		Control	400	HP	48	19,200
		Electrical	384	kW	40	15,400
		Machine Room	400	HP	60	24,000
		Sum				135,600
	Total					541,400
	L	ist	Design	ed HVAC	Unit Price	Total Pric (USD)
		Energy Cost(Electricity)	113,398	kWh/year	0.11	12,500
	Operation	Energy Cost(Natural Gas)	9,120	kWh/year	0.003	100
		Sum	400	ш		12,600
		VRF Water-cooled	400	HP	0	0
Annual		Indoor Unit	400 319	HP RT	0	0
Cost		Cooling Tower	400	HP	0	0
	Manintenance	Water Quality Maintenance	18	kW	0	0
	marimenance	Pump Boiler(Gas.Oil)/Elec. Heater	400	HP	0	0
		Doller(Gas,Oll)/Clec. neater	700		v	
		Sum				0
	Total					12,600

(4)

(5)

6

(3)

The Life Cycle Cost of system is divided into initial cost and annual cost. Initial Cost consists of equipment cost and installation cost. Annual Cost consists of operation cost and maintenance cost.

In the LCC sheet, users can input each costs of Proposed, Alt 1, Alt 2, and Alt 3 system.

- ① **Discount Rate** is for applying ratio of discount from list price of equipment by sales. If user can not enter the value, equipment price will be calculated by the prices in the LCC Price Setting, which users can modify.
- ② Initial Cost and Annual Cost list can be modified.

Important!

If you are changed the list and cost, do not click the Pre-simulation. Because it is simulated again with the pre-designated values rather than the values you entered.

- (3) If user wants to changed the unit price, please click the 'LCC Price Setting'. Detail information of the LCC Price Setting is contained next page.
- (4) 'Pre-Simulation' is automatically calculated initial cost and annual cost. In addition to price calculation, the list is automatically listed.
- (5) 'Clear' button deletes all inputted values.
- (6) If you want to see the result, click the 'Report' button.

 | Business | B

LATS LCC Program - LCC Price Setting(LCC) Advanced

Version 1.1

Copyright © 2021 LG Electronics.Inc

List		Туре	Unit	Unit Price [USD]
		LG Multi V 5	USD/HP	600
		LG Multi V_Pro	USD/HP	550
		LG Multi V_Tropical	USD/HP	600
		LG Multi V Water	USD/HP	550
	LG	LG Multi V S	USD/HP	550
	LG	LG Multi	USD/HP	450
		LG Single	USD/HP	300
		Single Package(CO)	USD/RT	600
		Single Package(HP)	USD/RT	600
		LG ISC	USD/RT	450
		VRF Air-Cooled	USD/HP	600
		VRF Water-Cooled	USD/HP	550
		VRF_Mini	USD/HP	550
		Multi Split	USD/HP	450
	Competitor	Single Split(Inverter)	USD/HP	300
		Single Split(Constant)	USD/HP	300
		Rooftop	USD/RT	600
		Air-Cooled Chiller	USD/RT	450
Initial Cost		Water-cooled Chiller	USD/RT	400
(Equipment)	Common	Cooling Tower	USD/CRT	100
		CW Pump	USD/kW	330
		Pump	USD/kW	330
		Boiler(Gas,Oil)/Elec. Heater	USD/RT	150
		1Way Cassette	USD/HP	280
		2Way Cassette	USD/HP	340
		4Way Cassette	USD/HP	360
		Duct_High	USD/HP	360
		Duct_Mid	USD/HP	310
	Air Side	Duct_Low	USD/HP	280
	Air Side	Wall Mounted	USD/HP	190
		Floor Standing	USD/HP	500
		Ceiling Suspend	USD/HP	400
		Console	USD/HP	210
		AHU	USD/HP	150
		FCU	USD/HP	150
		ERV	USD/HP	150
	Ventilation	FAU	USD/HP	150
		DOAS	Hen/up	150

Li	ist	Туре	Unit	Unit Price [USD]		
		Ref. Piping work	USD/HP	90		
		Drain Piping work	USD/HP	90		
Initial Cost		Indoor Unit Installation	USD/IDU	50		
		Duct Work	USD/HP	90		
		Outdoor Unit Basement	USD/ODU	1250		
		Packaged Unit Basement	USD/ODU	1250		
	Installation	Chiller Unit Basement	USD/ODU	1250		
	Installation	CW Piping	USD/HP	40		
		CHW Piping	USD/HP	70		
		FCU/AHU Installation	USD/FCU	50		
		Machine Room	USD/HP	60		
		Control	USD/HP	60 48 40		
		Electrical USD/kW		[USD] 90 90 50 90 1250 1250 1250 40 70 50 60		
		Heat Exchanger	USD/HP	40		
		VRF Air-Cooled	USD/HP	0		
		VRF Water-Cooled	USD/HP	0		
		Air-cooled Chiller	USD/RT	0		
		Water-cooled Chiller	USD/RT	0		
		Indoor Unit	USD/HP	0		
Annual Cost	Maintenance	Cooling Tower	USD/RT	0		
		Boiler(Gas,Oil)/Elec. Heater	USD/HP	0		
		Water Quality Maintenance	USD/HP	0		
		Fan Coil Unit(CCD)	USD/HP	0		
		Pump	USD/HP	0		
		Packaged Unit	USD/HP	0		

If you want to enter the other value than the default value, please enter the cost value. You can enter the price per horsepower(=1HP)

► Back to the 'LCC'

- 1 LCC Unit Price Setting is for setting the unit price of our own products and competitor's products. Basically users can enter the price per horsepower(=1HP).
- * The type of the input system can not be changed.
- 2) If users want to enter the default value, please click the 'Default' button.
- * The default unit price value means the average system unit price value for each region. So default value could not be the same as actual prices.
- 3 If users want to delete all unit price, click the 'Clear' button.
- ④ '▶ Back to the LCC' button takes you back to the Project LCC page.

Result Report

LATS LCC Program Version 1.1 Copyright © 2021 LG Electronics.Inc

Project Information

Date	2021-08-18			
Project Name	TEST PJT			
Country	GERMANY			
City	BERLIN			
Rep' Sales Person Name	EUN JI CHOI			
LG Sales Preson E-mail	0000@000000000			

Legal Notice

LATS LCC's estimation is for comparative purposes and should be used as a rough guideline only.

LATS LCC does not generate a complete energy model and life cycle analysis. There is no warranty of the results, expressed or implied, and all risk in using the results lies with the user. In no event will LG Electronics Inc. be held responsible for damages resulting from the use of this program. LATS LCC does not consider ventilation make-up air load or unit piping in its estimation. Unit capacities and power consumption are based on nominal values.

Energy conumption rates for pumps, cooling towers, and boilers are based on ASHRAE Standard 90.1 2010 default minimum efficiencies. LATS LCC reports are provided as is with no stated or implied guarantee.

LG Electronics Inc. reserve the right to make changes at any time. Changes to LATS LCC may affect your results even if your input does not change. For a comprehensive, precise energy model, please seek the services of a consulting engineer using a cerified modeling tool.

The report can be printed in A4 size and saved in PDF format. The cover page of the report consists of followings:

- 'Save as PDF' button is the function to save the report as PDF. The PDF file will be saved in the same folder where operating excel file locates.
- **Project Information** consists of Date, Project Name, Country, City, Rep'Sales Person Name, and LG Sales Person E-mail. This is inputted value according to the data entered 'Basic Input'.
- 'Legal Notice' is very important. Please read the notice message at least once before using the report.

■ Location Information

Country: GERMANY City: BERLIN

Climate Zone: 5

International Climate Zone can be found in ANSI/ASHRAE/IESNA Standard 90.1-2007. Climate Zone Number 5 is defined as Cool weather with the criteria 3000 < HDD18°C ≤ 4000, Humid(5A), and Dry(5B).

■ Design Condition

Cooling Design Condition							
Design Outdoor Air Temp. 30.3 °C(DB)							
Design Ro	Design Room Air Temp.						
Start Month	End N	4onth	D	ec			
Start Time 9:00 End Time 18:00							

Heating Design Condition						
Design O	Design Outdoor Air Temp8.6 °C(DB)					
Design I	Room Air Temp		2	°C(DB)		
Start Month	Jan	1onth	D	ec		
Start Time 9:00 End Time 18:00						

Monthly Temperature [℃]

MAX

AVG --- MIN

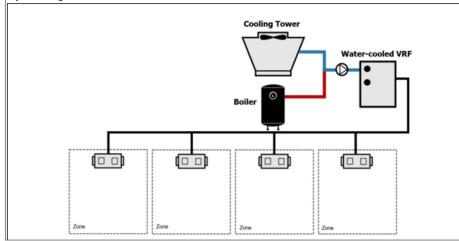
Μ	lonth	ly Re	lative	Humidit	y [%]
---	-------	-------	--------	---------	-------

* The source of Weather Data is TMY(Typical Meteorological Year) data. A TMY is a set of meteorological data with data values for every hour in a year for a given geographical location. The data are selected from hourly data in a longer time period(normally 10 years or more).

Building Information

Building Information								
Building Type	-							
Area	2,320	mÎ						
Calculated Equip	ment Capacity							
Cooling	1,100	kW						
Heating	1,100	kW						
Hot Water Load per hour	200	kW						

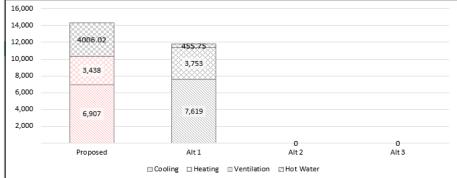
■ Energy Cost

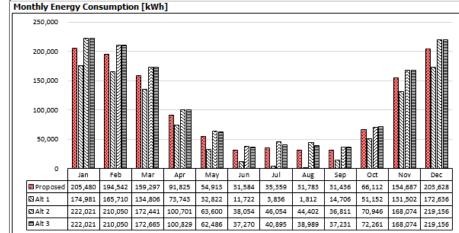

Energy Cost									
Elec.	0.11	USD/	/kWh	Gas	0.9	USD/Therm			
Oil	0.035	US	D/ŧ	Pellet	1.0	USD/t			
	CO2 Emission Factor								
Elec.	1.1	961	Gas	0.2	303	kgCO2/kWh			
Oil	Oil 0.2688 Pellet				494	kgCO2/kWh			
L	CC Ana	lysis Yea	ar	1	0	-			

- Location Information consists of Country, City, Climate Zone and Climate Zone Specification with Climate zone map, which briefly shows the where is corresponding to that climate zone.
- * These climate zones were first adopted in the 2004 IECC Supplement and the ASHRAE 90.1(2004) edition.
- **Design Conditions** are the same as inputted data. Monthly temperature and Monthly relative humidity graph shows the maximum, minimum and average temperatures and relative humidity per month.
- Building Information & Energy Cost is the same as inputted data. If you wants to change the value, go back to the 'Basic Input'.

Propo	osed	Water_cooled VRF						
	Туре	Total Capacity[kW]	Туре	Total Capacity[kW]				
	LG Multi V 5	-	LG Boiler	-				
	LG Multi V_Pro	-	LG Chiller	-				
	LG Multi V_Tropical	-	LG Cooling Tower	1,120				
Heat Source	LG Multi V_Water	1,120						
Heat Source	LG Multi V S	-						
	LG Multi	-						
	LG Single	-						
	LG Single Package	-						
	1Way Cassette	-	Wall mounted	-				
	2Way Cassette	-	Floor Standing	-				
Air Side	4Way Cassette	-	Ceiling Suspended	-				
AIT Side	Duct_High	1,120	Console	-				
	Duct_Mid	-	AHU	-				
	Duct_Low	-	FCU	-				
	ERV	-						
Ventilation	FAU	-						
	DOAS	-						

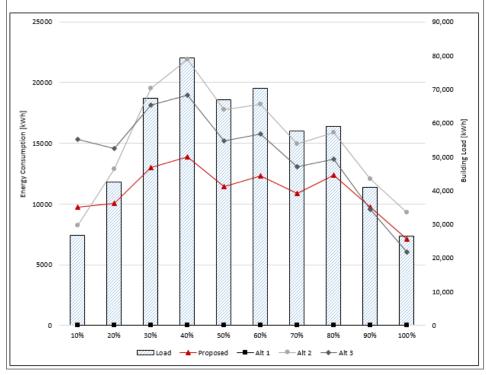
System Diagram




- System Component consists of four pages(Proposed, Alt 1, Alt 2, and Alt 3). The system name selected by the user is displayed, and when multiple models are selected, the representative system is displayed.
- The table shows selected total capacity of the Heat source, Air side, and Ventilation.
- System Diagram that matches the system name selected by the user is displayed.
- * Diagram type consists of air-cooled VRF, water-cooled VRF, VRF_mini, multi split, single split, single package(rooftop), air-cooled chiller and water-cooled chiller.

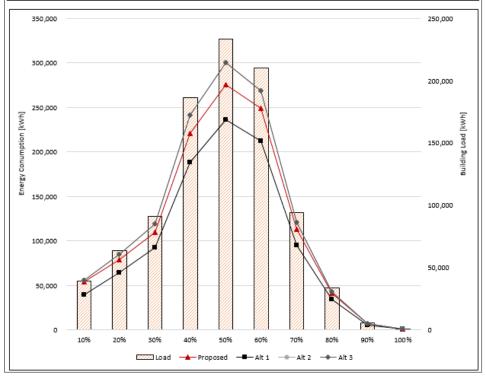
Annual En	ergy Consur	nption				
			Proposed	Alt 1	Alt 2	Alt 3
Systen	n Type	Unit	Air_cooled VRF	Air_cooled VRF		
Cooling	Electricity	kwh	6,907	7,619	-	-
Heating	Electricity	kwh	3,438	3,753	-	-
	Gas	kwh				
Ventilation	Electricity	kwh			-	-
Vericiacion	Gas	kwh				
Hot Water	Electricity	kwh	4,006			
not water	Gas	kwh	-	456	-	-
Total	Electricity	kwh	14,351	11,372		
TOLAI	Gas	kwh		456		

Annual Energy Consumption [kWh]



- Annual energy consumption shows System Type, Cooling, Heating(electricity, gas), Ventilation(electricity, gas), Hot water(electricity, gas) energy each Proposed and Baselines. Energy unit is 'kwh'.
- Below the graph shows the figures in the table for easy understanding. The graph of the red color is proposed system.
- The graph and table at the bottom are expressed as **monthly energy consumption** to determine which season uses the most energy.

Cooling Energy Consumption at Partial condition [kWh]												
Buildir	ng Load	OA Temp	Occur ence	Total Load	Proposed	d	Alt 1		Alt 2		Alt 3	
%	kW	Ö	hours	kWh	kWh	EER	kWh	EER	kWh	EER	kWh	EER
10	106	16.7	253	26,692	9,718	2.7	0	0.0	8,262	3.2	15,340	1.7
20	211	18.1	202	42,622	10,073	4.2	0	0.0	12,891	3.3	14,576	2.9
30	317	19.6	213	67,415	12,999	5.2	0	0.0	19,542	3.4	18,164	3.7
40	422	21.0	188	79,336	13,892	5.7	0	0.0	21,927	3.6	18,956	4.2
50	528	22.4	127	66,993	11,420	5.9	0	0.0	17,770	3.8	15,176	4.4
60	633	23.9	111	70,263	12,305	5.7	0	0.0	18,181	3.9	15,742	4.5
70	739	25.3	78	57,603	10,842	5.3	0	0.0	14,919	3.9	13,086	4.4
80	844	26.7	70	59,080	12,400	4.8	0	0.0	15,891	3.7	13,715	4.3
90	950	28.2	43	40,829	9,763	4.2	0	0.0	12,038	3.4	9,564	4.3
100	1,055	29.6	25	26,375	7,112	3.7	0	0.0	9,307	2.8	6,025	4.4
	Total		1,310	537,206	110,524	4.9	0	###	150,728	3.6	140,344	3.8


- Cooling energy consumption at partial condition table shows building load, outdoor air temperature, occurrence, total load, energy consumption, and EER at partial condition.
- Below the graph is energy consumption and building load graph. It is easy to see which partial load condition is dominant in the selected city and design conditions.

Bar Graph : Building Load [kWh],

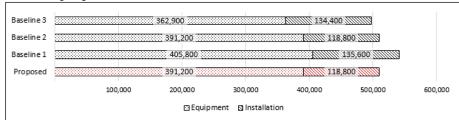
Line Graph: Energy consumption[kWh]

Cooli	Cooling Energy Consumption at Partial condition [kWh]											
Buildi	ng Load	OA Temp	Occur ence	Total Load	Proposed	Н	Alt 1		Alt 2		Alt 3	
%	kW	ď	hours	kWh	kWh	EER	kWh	EER	kWh	EER	kWh	EER
10	106	14.8	373	39,352	53,806	0.7	39,749	1.0	55,829	0.7	55,829	0.7
20	211	12.3	301	63,511	78,893	0.8	64,153	1.0	84,747	0.7	84,747	0.7
30	317	9.9	289	91,469	109,717	0.8	92,393	1.0	119,481	0.8	119,481	0.8
40	422	7.4	442	186,524	220,545	0.8	188,409	1.0	241,023	0.8	241,023	0.8
50	528	4.9	443	233,683	275,380	0.8	236,043	1.0	299,989	0.8	299,989	0.8
60	633	2.5	332	210,156	248,813	0.8	212,279	1.0	268,605	0.8	268,605	0.8
70	739	0.0	128	94,528	113,259	0.8	95,483	1.0	120,439	0.8	120,439	0.8
80	844	-2.5	40	33,760	41,230	0.8	34,102	1.0	42,912	0.8	42,912	0.8
90	950	-4.9	6	5,697	7,134	0.8	5,755	1.0	7,228	0.8	7,228	0.8
100	1,055	-7.4	1	1,055	1,356	0.8	1,066	1.0	1,337	0.8	1,337	0.8
	Total		2,355	959,734	1,150,131	0.8	969,432	1.0	1,241,590	0.8	1,241,590	0.8

■ Heating energy consumption at partial condition table shows building load, outdoor air temperature, occurrence, total load, energy consumption, and EER at partial condition.

Energy consumption of heating includes electricity consumption and gas consumption by converting energy consumption from different unit to kWh unit.

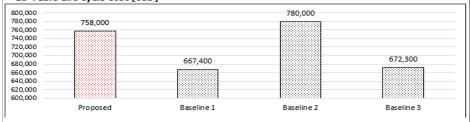
- Below the graph is energy consumption and building load graph. It is easy to see which partial load condition is dominant in the selected city and design conditions.
- · Bar Graph : Building Load [kWh],
- · Line Graph : Energy consumption[kWh]


■ Life Cycle Cost Analysis

Life Cycle Cost can be divided into Initial, Operation, and Maintenance cost.

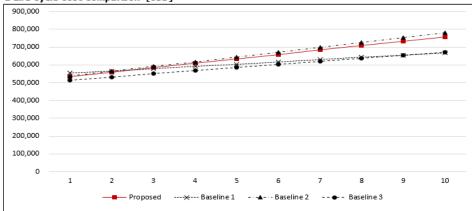
Unit: USD

		Proposed	Baseline 1	Baseline 2	Baseline 3
Sys	tem Type	Air_cooled VRF	Water_cooled VRF	Air_cooled VRF	Air_cooled Chiller
	Equipment	391,200	405,800	391,200	362,900
Initial Cost	Installation	118,800	135,600	118,800	134,400
	Total	510,000	541,400	510,000	497,300
Cost Dit	fference Ratio	100%	106%	100%	98%
Operation,	Operation	24,800	12,600	27,000	17,500
Maintenance	Maintenance				
	Total	24,800	12,600	27,000	17,500
Cost Difference Ratio		100%	51%	109%	71%
10 Years Life cycle Cost		758,000	667,400	780,000	672,300
Cost Dif	fference Ratio	100%	88%	103%	89%


Initial Cost [USD]

Annual Cost [USD]

10 Years Life cycle Cost [USD]



- Life cycle cost analysis consists of Initial cost and Operation & Maintenance cost. Additionally, it contains System type, Cost difference ratio based on proposed cost and 10, 15, or 20 years life cycle cost that users selected.
- Below graphs are Initial cost and Annual cost. The red of the graph is the proposed system. Initial cost is divided into equipment and installation cost. Annual cost consists of operation and maintenance cost.
- 10, 15, or 20 years life cycle cost represents the cumulative amount after that years. Red color graph shows that proposed system.

■ Payback Year			
Based on Systems	Baseline 1	Baseline 2	Baseline 3
Payback	2Years 7Months	-	-

■ Life Cycle Cost Comparison [USD]

LCC	Commulated Total Cost						
Year	Proposed	Baseline 1	Baseline 2	Baseline 3			
1	534,800	554,000	537,000	514,800			
2	559,600	566,600	564,000	532,300			
3	584,400	579,200	591,000	549,800			
4	609,200	591,800	618,000	567,300			
5	634,000	604,400	645,000	584,800			
6	658,800	617,000	672,000	602,300			
7	683,600	629,600	699,000	619,800			
8	708,400	642,200	726,000	637,300			
9	733,200	654,800	753,000	654,800			
10	758,000	667,400	780,000	672,300			
11	•	-	-	-			
12	·	-	-	-			
13	•	-	-	-			
14	•	-	-	-			
15	·	-	-	-			
16	•	-	-	-			
17	-	-	-	-			
18	·	-	-	-			
19	•	-	-	-			
20	-	-	-	-			

■ 10 Years Total CO2 Emission[kgCO2].

Item	Unit	Proposed	Baseline 1	Baseline 2	Baseline 3
Emission of CO2	kgCO2	255,085	396,554	294,542	405,598

- Payback Year shows that payback year based on system Baseline 1, Baseline 2, and Baseline 3. Plus, users can see the payback period with each cumulative amount graph. If a payback year occurs, the payback year will be listed on the above table. Otherwise, payback year expressed as '-'.
- Life cycle cost comparison shows comparison of the cumulative amount at each year. If you want to see graph in detail, please see the next page.
- CO2 emissions show annual emission of CO2. Below graph is total CO2 emission at the end of 10, 15, or 20 years. Red color graph shows proposed system.

■ Reference

1. Weather Data:

The source of Weather data is TMY(Typical Meteorological Year) data. The weather data that LATS LCC uses are Typical Meteorological Year(TMY) data.

TMYs contain one year of hourly data that best represent weather conditions over multiple years period.

In order to apply a variety of time period, TMY data are used in energy simulation field since they represent typical rather than extreme conditions.

In other words, TMY data are not the same as a certain year's weather data.

2. Climate zone:

The eight zones are hot-humid, hot-dry, mixed-dry, mixed-humid, marine, cold, very cold, and subarctic. These climate zones were first adopted in the 2004 IECC Supplement and the ASHRAE 90.1(2004) edition.

3. CO2 Emission Factors are derived from following references:

- 1) Carbon Footprint Country specific electricity grid greenhouse gas emission factors (2019)
- 2) Technical Paper Electricity-spcific emission factors for grid electricity(2011)

4. Calculation of the Energy consumption:

LATS LCC calculates energy consumptions based on whole year's hourly data, 8760 hours, of each selected city's weather data. Thus, the reult will be different from each city even users type in the same values.

5. Chilled-Water Pump:

Methodology of Chilled-water pump power is derived from the Chilled-Water Pumps-G3.1.3, 10-ASHRAE 90.1(2010). Chilled-water pump power is calculated by 349 kW/1,000 L/s, and pump type is contant flow.

6. Condenser-Water Pump:

Methodology of Condenser-water pump power is derived from the Heat Rejection(System 7 and 8)-G3.1.3.11-ASHRAE 90.1(2010).

Condenser-water pump power is calculated by 301 kW/1,000 L/s, and pump type is variable flow.

7. Cooling Tower:

Performance or fan power input of cooling tower is derived from TABLE 6.8.1G-ASHRAE 90.1(2010), which value is 3.23L/s.kW.

Cooling tower equipment type is propeller or axial fan open-circuit cooling towers.

8. Hot Water Pumps:

Hot water pump power is derived from Hot Water Pumps-G3.1.3.5-ASHRAE 90.1(2010).

Hot-water pump power is calculated by 301 kW/1000 L/s, and pump type is contant flow.

9. Simple Mode - System EER & COP:

Simpe mode provides default values of EER & COP according to the type of each system.

These default EER & COPs are calculated by average value of single unit model of LG's EU line-up. EER & COPs of the competitor's model are assumed the same as those of the LG model.

Additionally, EER of the Single Package is derived from heat pump model, and EER of rooftop is assumed the same as that of Single Package. The EER of the Single Split(Constant) model was assumed as 3.

While using the program, users can see the how LCC tool calculates energy consumption or where the default values are derived from.

■ Reference shows the summary of the source of the data referenced for calculation in the program and the values used as default values.

LATS LCC_Weather_LATAM LCC Tool ver.1.01_LATAM Registration_Code.lcc

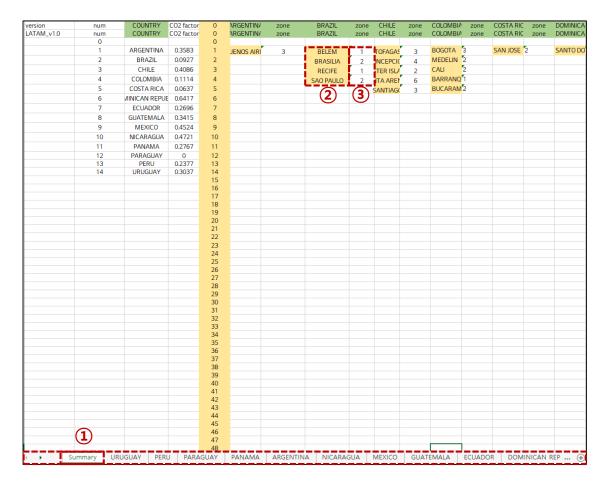
2

Α	В	С	D	Е	F	G (3) ⊬	1	J	К	L	M	N
nm	dd	tt	BELEMDB	BELEMWB	BRASILIAC			RECIFEWB	SAO PAUI	SAO PAUL	OWB		
	1	1	24.1	23.6826	19.200001	18.6307	25.9	24.81969	17	16.4405			
	1	2	24.299999	23.8804	18.799999	18.3016	25.6	24.6011	16.6	16.1067			
	1	3	24.299999	23.9178	18.299999	17.9371	25.4	24.47949	16.299999	15.8409			
	1	4	24.200001	23.8189	17.9	17.6376	25.1	24.2598	16.1	15.6733			
	1	5	24	23.6582	17.5	17.337	24.799999	24.0762	16	15.5746			
	1	6	23.799999	23.46	17.299999	17.2024	24.4	23.7936	15.9	15.476			
	1	7	24	24	18	17.6723	26	24.8436	17	16.3808			
	1	8	25	24.6107	20	19.3184	29	26.63099	18.5	17.399			
	1	9	27.4	26.23889	20	18.99729	30.700001	27.5157	20	18.4602			
	1	10	28	26.4052	25	22.5004	32	28.0273	22	19.717			
	1	11	29	26.991	27	23.142	33	28.9287	23	20.9479			
	1	12	30.4	27.8372	29.5	25.2277	33	28.5962	24.200001	21.41539			
	1	13	30	27.9403	30	25.2331	33	28.5962	24	21.583			
	1	14	29	27.36449	21	19.9678	32	28.712	23	21.2575			
	1	15	29.6	27.5979	21.6	20.48429	32	28.36329	22.200001	20.5896			
	1	16	28	26.4052	25	23.148	31	27.79189	22	20.3062	\sim		
	1	17	27	25.8132	27	23.4293	31	27.79189	21	19.6581	(4)		
	1	18	26.6	25.9576	26.6	23.0388	29	26.7019	20.1	18.9145			
	1	19	26	25.21509	25	22.5004	28	26.0414	20	19.00349			
	1	20	26	25.21509	24	21.8769	28	26.0414	19	18.3422			
	1	21	26	25.4445	23.200001	21.4053	27.700001	25.8275	19	18.4057			
	1	22	26	25.21509	23	21.5711	28	26.0414	19	18.4057			
	1	23	26	25.21509	21	20.2986	28	26.0414	19	18.3739			
	1	24	25.200001	24.8471	18.799999	18.39899	27.5	25.8525	19	18.3422			
	2	1	25	24.6107	19	18.6625	27	25.4456	19	18.3422			
	2	2	25	24.6107	18	18	27	25.0916	19	18.3422			
	2	3	25	24.6107	18.200001	18.0007	26.5	24.9303	18.299999	17.6868			
	2	4	24	24	18	17.6723	26	24.4859	18	17.3616			
	2	5	24	24	18	18	25	24.2354	19	18.3422			
	2	6	23.799999	23.6097	19	18.7289	25	24.6106	18.9	18.2757			
	2	7	24	23.6209	19	19	26	25.215	18.9	18.4355			
	2	8	26	25.6004	20	19.65259	27	25.3737	19	18.6646			
	2	9	26.799999	26.0762	21.6	20.7842	28	25.691	20.1	19.5523			
	2	10	29	27.36449		22.3844	31	27.4523	20.5	19.8791			
	2	11	30	27.9403	27	23.4293	31	26.8107	21	20.3028			
	2	12	31.5	28.7929	27.799999	24.273	32	28.0273	21	20.3028			
	2	13	32	29.0741	27	23.72829	33	28.9287	20				
	ARGENTIN	IA NICO	ARAGUA M		UATEMALA	ECUADO	n I nove	INICAN REP	IDUG L	OSTA RICA	COLOMBI	A BRAZIL	CHIL

If there is no weather data for the city you want, you can add to the weather data as shown below.

If you want to add weather data, you need dry bulb temperature and wet bulb temperature data.

You can check that the that the weather data is at the location where the LCC Tool is installed.


If you open the weather data file, you can see that there are weather data for each country and city as shown on the left.

Caution!

You should not change the structure of your Excel data. When changing, an error occurs in the tool, so do not change the structure. Please do not change weather data file name.

- 1) Please click on the desired country at the bottom.
- ② Columns A, B and C should not be modified with the values entered to list 8760 hours of data.
- 3 Please enter "DB" and "WB" after the city name you want to enter in the same format as the city name above.
- 4 After that, you can enter 8760 hours of data.

- ① Among the sheets below, change the hidden "Summary" sheet to unhidden.
- ② If you have **added a city** afterwards, please enter the city name in capital letters at the bottom of the country.
- 3 You must **enter the zone of the city** you entered. If you don't know the zone, you can enter the same zone as the zone in a city with a similar weather zone in your country.

Please be sure to save after entering all values.

Caution!

You should not change the structure of your Excel data. When changing, an error occurs in the tool, so do not change the structure.

Location	Panama (Panama city)	
Climate Zone	Zone 1	
Use	Shopping Mall	
Gross Area	3,800 m³	
Scale	7 floors	
Proposed System	Single Package (20RT × 30ea)	
Baseline System	Rooftop (20RT × 30ea)	

Analysis Conditions

1. Proposed: LG Single Package(Cooling Only)

2. Baseline: Rooftop(Cooling Only)

3. Total Equipment Capacity: 725 HP

4. Maximum Cooling Load: 580 RT

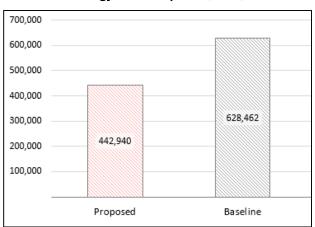
5. Operating Mode: Cooling

6. Daily Operating Time: 11 Hours (9AM~ 20PM)

7. Operating Month: Jan. ~ Dec.

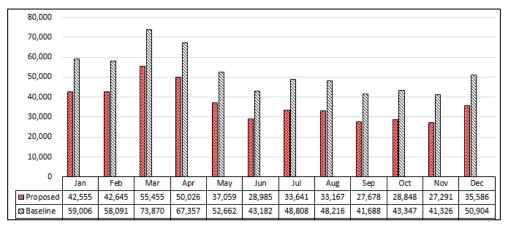
8. Yearly Operating Time: 12 Months / Year (Total 4,378 hours / year)

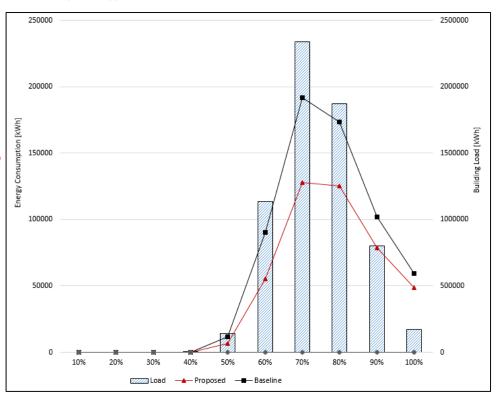
HVAC Systems


	Baseline	Proposed
	Rooftop (20RT)	Single Package (20RT)
Cooling(Btu/h)	10.0 EER / 12 IEER	12.2 EER / 19 IEER
Heating	None	None
Air handler	8,000 CFM, 7.5 hp	8,000 CFM, 5.0hp

Proposed	Single Package(Cooling Only)
Baseline	Rooftop(Cooling Only)

■ Energy Comparison

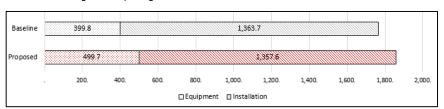

① Annual Energy Consumption [kWh]


Proposed	442,940
Baseline	628,462

Annual Energy Savings: 30%

Monthly Energy Consumption [kWh]

3 Cooling Energy Consumption at Partial condition [kWh]

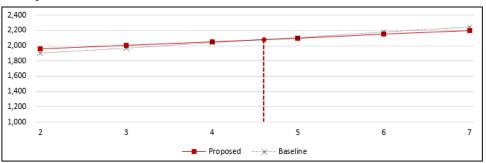

Proposed	Single Package(Cooling Only)
Baseline	Rooftop(Cooling Only)

■ Life Cycle Cost(LCC) Comparison

① Life Cycle Cost(LCC) Analysis [USD×1,000]

		Proposed	Baseline
System Type		S.Package(Rooftop)	S.Package(Rooftop)
	Equipment	499.7	399.8
Initial Cost	Installation	1,357.6	1,363.7
	Total	1,857.3	1,763.5
Cost Difference Ratio		100%	95%
Operation,	Operation	48.8	69.2
Maintenance	Maintenance	•	
	Total	48.8	69.2
Cost Difference Ratio		100%	142%
15 Years Life cycle Cost		2,589.3	2,801.5
Cost Di	ifference Ratio	100%	108%

- Initial Cost [USD×1,000]


- Annual Cost [USD×1,000]

2 15 Years Life Cycle Cost [USD×1,000]

3 Payback Year

Payback Year: 4Years 8 Months

Location	Saudi Arabia (Arar)	
Climate Zone	Zone 1	
Use	Office	
Gross Area	62,100 m²	
Scale	8 floors	
Proposed System	LG Multi V 5(140kW × 58ea) + IDU(High Static Duct)	
Baseline System	Air cooled VRF(140kW × 58ea) + IDU (High Static Duct)	

Analysis Condition

1. Proposed: LG Multi V 5 + Indoor unit

2. Baseline: Air-cooled VRF + Indoor unit

3. Total Equipment Capacity: 2,890 HP

4. Maximum Cooling Load: 8,000 kW

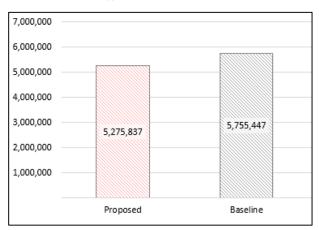
5. Operating Mode: Cooling

6. Daily Operating Time: 11 Hours (9AM~ 20PM)

7. Operating Month: Jan. ~ Dec.

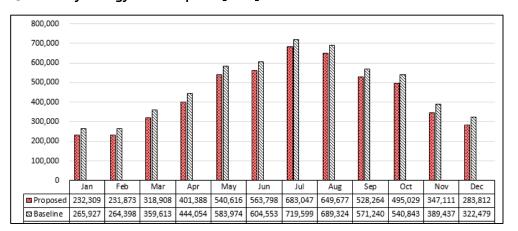
8. Yearly Operating Time: 12 Months / Year (Total 6,570 hours / year)

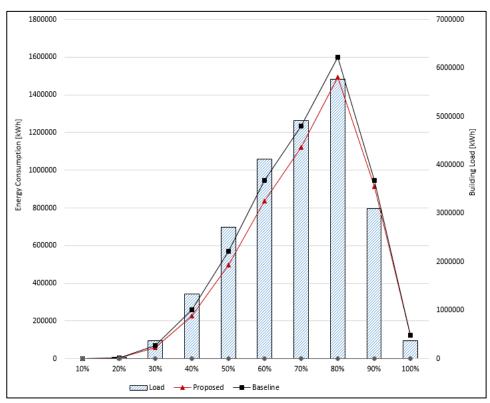
HVAC Systems


	Baseline	Proposed
	Air-cooled VRF (140kW)	LG Multi V 5 (140kW)
Cooling	3.59 EER	3.59 EER
Heating	None	None
Air handler	High Static Duct(15.8kW)	High Static Duct(15.8kW)

Proposed	LG Multi V 5
Baseline	Air-cooled VRF

■ Energy Comparison


① Annual Energy Consumption [kWh]


Proposed	5,275,837
Baseline	5,755,447

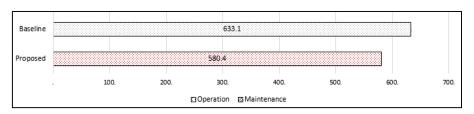
Annual Energy Savings: 8%

Monthly Energy Consumption [kWh]

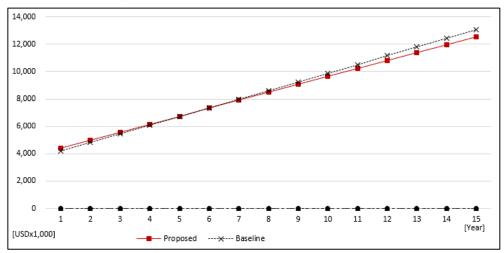
3 Cooling Energy Consumption at Partial condition [kWh]

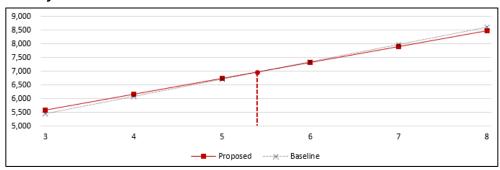

Proposed	LG Multi V 5
Baseline	Air-cooled VRF

■ Life Cycle Cost(LCC) Comparison


① Life Cycle Cost(LCC) Analysis [USD×1,000]

		Proposed	Baseline
Sys	tem Type	Air_cooled VRF	Air_cooled VRF
	Equipment	2,841.6	2,557.5
Initial Cost	Installation	997.1	997.1
	Total	3,838.7	3,554.6
Cost Difference Ratio		100%	93%
Operation,	Operation	580.4	633.1
Maintenance	Maintenance	•	•
	Total	580.4	633.1
Cost Di	fference Ratio	100%	109%
15 Years L	ife cycle Cost	12,544.7	13,051.1
Cost Di	fference Ratio	100%	104%


- Initial Cost [USD×1,000]


- Annual Cost [USD×1,000]

② 15 Years Life Cycle Cost [USD×1,000]

③ Payback Year

Payback Year: 5Years 5Months

Location	Vietnam (Danang)	
Climate Zone	Zone 1	
Use	Complex Building	
Gross Area	13,300 m²	
Scale	7 floors	
Proposed System	LG Multi V S(28kW × 250ea) + IDU(Low Static Duct)	
Baseline System	Multi Split(28kW × 180ea) + Single Split(5kW × 500ea)	

Analysis Condition

1. Proposed: LG Multi V S + Indoor unit

2. Baseline: Multi Split + Single Split + Indoor unit

3. Total Equipment Capacity: 2,500 HP

4. Maximum Cooling Load: 7,000 kW

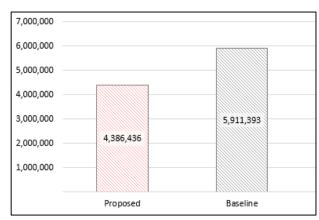
5. Operating Mode: Cooling

6. Daily Operating Time: 14 Hours (6AM~ 20PM)

7. Operating Month: Jan. ~ Dec.

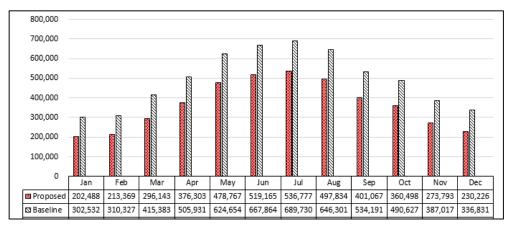
8. Yearly Operating Time: 12 Months / Year (Total 5,469 hours / year)

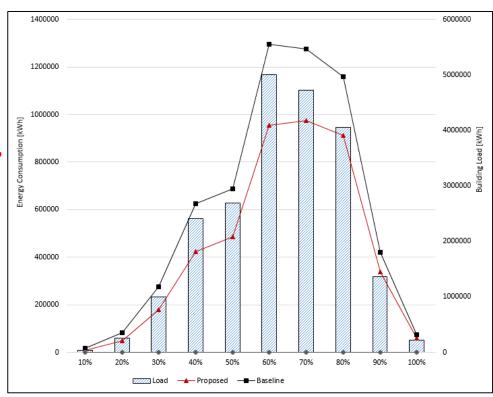
HVAC Systems


	Baseline	Proposed
	Multi Split + Single Split	LG Multi V S (28kW)
Cooling	3.95 + 3.01 EER	3.95 EER
Heating	None	None
Air handler	Low Static Duct(4.5kW)	Low Static Duct(4.5kW)

Proposed	LG Multi V S
Baseline	Multi Split + Single Split

■ Energy Comparison

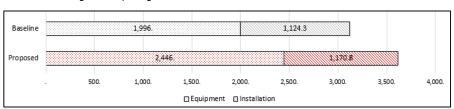

① Annual Energy Consumption [kWh]


Proposed	4,386,436
Baseline	5,911,393

Annual Energy Savings: 26%

② Monthly Energy Consumption [kWh]

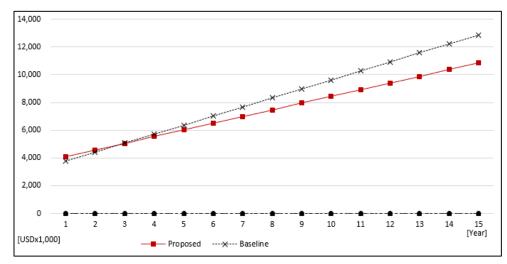
3 Cooling Energy Consumption at Partial condition [kWh]

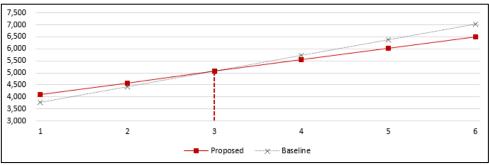

Proposed	LG Multi V S
Baseline	Multi Split + Single Split

■ Life Cycle Cost(LCC) Comparison

① Life Cycle Cost(LCC) Analysis [USD×1,000]

		Proposed	Baseline
System Type		VRF_Mini	Multi Split
	Equipment	2,446.	1,996.
Initial Cost	Installation	1,170.8	1,124.3
	Total	3,616.8	3,120.3
Cost Difference Ratio		100%	86%
Operation,	Operation	482.6	650.3
Maintenance	Maintenance	•	
	Total	482.6	650.3
Cost Di	fference Ratio	100%	135%
15 Years Life cycle Cost		10,855.8	12,874.8
Cost Difference Ratio		100%	119%


- Initial Cost [USD×1,000]


- Annual Cost [USD×1,000]

2 15 Years Life Cycle Cost [USD×1,000]

③ Payback Year

Payback Year: 3Years

Location	France (Paris)	
Climate Zone	Zone 4	
Use	Hospital	
Gross Area	16,100 m²	
Scale	6 floors	
Proposed System	LG Multi V Water IV (173.6kW × 50ea) + IDU(High Static Duct)	
Baseline System	Water-cooled Chiller(200RT × 13ea)	

Analysis Condition

1. Proposed: LG Multi V Water IV + Indoor unit

2. Baseline: Water-cooled Chiller + Indoor unit

3. Total Equipment Capacity: 3,040 HP

4. Maximum Cooling Load: 8,500 kW

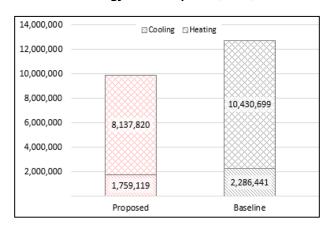
5. Operating Mode: Cooling + Heating

6. Daily Operating Time: 24 Hours (6AM~ 5AM)

7. Operating Month: Jan. ~ Dec.

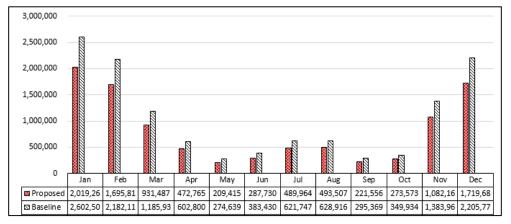
8. Yearly Operating Time: 12 Months / Year (Total 4,745 hours / year)

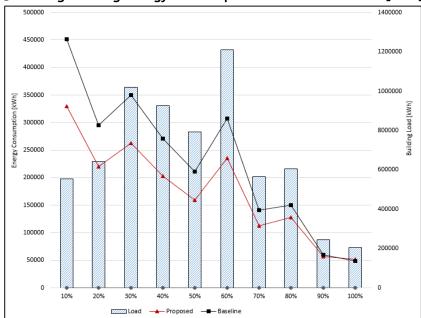
HVAC Systems

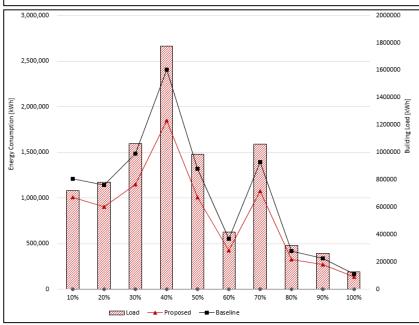

	Baseline	Proposed
	Water-cooled Chiller (200RT)	LG Multi V Water IV (173.6kW)
Cooling	6.1 COP	5.1 EER
Heating	80% efficiency boiler	5.5 COP + 80% efficiency boiler
Air handler	High Static Duct(28kW)	Ducted type FCU(28kW)

Proposed	LG Multi V Water IV	
Baseline	Water-cooled Chiller	

■ Energy Comparison

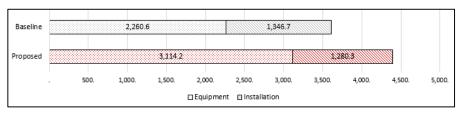

① Annual Energy Consumption [kWh]


Proposed	9,896,939	
Baseline	12,717,140	

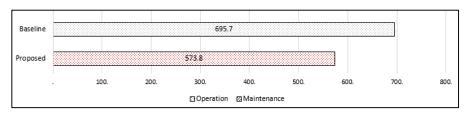

Annual Energy Savings: 22%

② Monthly Energy Consumption [kWh]

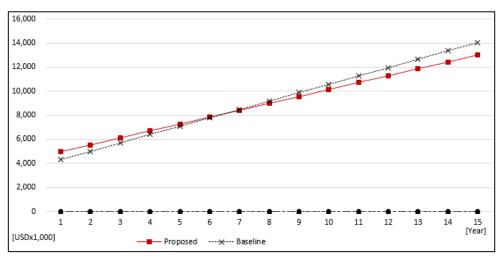
③ Cooling/Heating Energy Consumption at Partial condition [kWh]

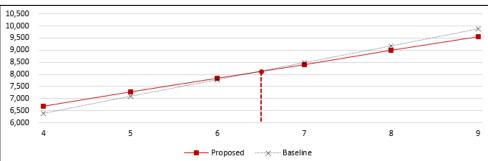

Proposed	LG Multi V Water IV	
Baseline	Water-cooled Chiller	

■ Life Cycle Cost(LCC) Comparison


① Life Cycle Cost(LCC) Analysis [USD×1,000]

		Proposed	Baseline
System Type		Water_cooled VRF	Water_cooled Chiller
Initial Cost	Equipment	3,114.2	2,260.6
	Installation	1,280.3	1,346.7
	Total	4,394.5	3,607.3
Cost Difference Ratio		100%	82%
Operation, Maintenance	Operation	573.8	695.7
	Maintenance	•	•
	Total	573.8	695.7
Cost Di	ifference Ratio	100%	121%
15 Years L	ife cycle Cost	13,001.5	14,042.8
Cost Di	ifference Ratio	100%	108%


- Initial Cost [USD×1,000]


- Annual Cost [USD×1,000]

2 15 Years Life Cycle Cost [USD×1,000]

③ Payback Year

Payback Year: 6Years 6Months

